Lipschitz-free spaces over unit spheres and the Metric Approximation Property

Richard Smith joint with Filip Talimdjioski

University College Dublin, Ireland

17 March 2022

Definition

Let (M, d) be a metric space having distinguished point x_0 . Define $Lip_0(M)$ to be the space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at x_0 , with norm

$$\|f\| := \operatorname{Lip}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} : x, y \in M, x \neq y
ight\}.$$

Definition

Let (M, d) be a metric space having distinguished point x_0 . Define $Lip_0(M)$ to be the space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at x_0 , with norm

$$\|f\| := \operatorname{Lip}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} : x, y \in M, x \neq y
ight\}.$$

Definition

Given $x \in M$, define $\delta_x \in Lip_0(M)^*$ by $\delta_x(f) = f(x), f \in Lip_0(M)$.

Definition

Let (M, d) be a metric space having distinguished point x_0 . Define $Lip_0(M)$ to be the space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at x_0 , with norm

$$|f|| := \operatorname{Lip}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} : x, y \in M, x \neq y \right\}.$$

Definition

Given $x \in M$, define $\delta_x \in \text{Lip}_0(M)^*$ by $\delta_x(f) = f(x)$, $f \in \text{Lip}_0(M)$. We define the **Lipschitz-free** Banach space over *M* to be

$$\mathcal{F}(M) = \overline{\operatorname{span}}^{\|\cdot\|}(\delta_x)_{x \in M} \subseteq \operatorname{Lip}_0(M)^*.$$

Definition

Let (M, d) be a metric space having distinguished point x_0 . Define $Lip_0(M)$ to be the space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at x_0 , with norm

$$|f|| := \operatorname{Lip}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} : x, y \in M, x \neq y \right\}.$$

Definition

Given $x \in M$, define $\delta_x \in \text{Lip}_0(M)^*$ by $\delta_x(f) = f(x)$, $f \in \text{Lip}_0(M)$. We define the **Lipschitz-free** Banach space over *M* to be

$$\mathcal{F}(M) = \overline{\operatorname{span}}^{\|\cdot\|}(\delta_x)_{x \in M} \subseteq \operatorname{Lip}_0(M)^*.$$

Fact

 $\mathcal{F}(M)^* \equiv \operatorname{Lip}_0(M).$

Definition

A Banach space X has

• the approximation property (AP) if, given $K \subseteq X$ compact and $\varepsilon > 0$, there is a finite-rank operator T on X such that $||Tx - x|| \leq \varepsilon$ for all $x \in K$;

Definition

A Banach space X has

- the approximation property (AP) if, given $K \subseteq X$ compact and $\varepsilon > 0$, there is a finite-rank operator T on X such that $||Tx x|| \leq \varepsilon$ for all $x \in K$;
- 2 the λ-bounded approximation property (λ-BAP) if T above can always be chosen to satisfy ||T|| ≤ λ;

Definition

A Banach space X has

- the approximation property (AP) if, given $K \subseteq X$ compact and $\varepsilon > 0$, there is a finite-rank operator T on X such that $||Tx - x|| \leq \varepsilon$ for all $x \in K$;
- 2 the λ-bounded approximation property (λ-BAP) if T above can always be chosen to satisfy ||T|| ≤ λ;
- the metric approximation property (MAP) if it has the 1-BAP.

Definition

A Banach space X has

- the approximation property (AP) if, given $K \subseteq X$ compact and $\varepsilon > 0$, there is a finite-rank operator T on X such that $||Tx x|| \leq \varepsilon$ for all $x \in K$;
- 2 the λ-bounded approximation property (λ-BAP) if T above can always be chosen to satisfy ||T|| ≤ λ;
- the metric approximation property (MAP) if it has the 1-BAP.

Proposition

X has the λ -BAP if and only if $I \in \lambda \overline{B}^{SOT}$, where *B* is the unit ball of the space of finite-rank operators on *X*.

Definition

A Banach space X has

- the approximation property (AP) if, given $K \subseteq X$ compact and $\varepsilon > 0$, there is a finite-rank operator T on X such that $||Tx x|| \leq \varepsilon$ for all $x \in K$;
- 2 the λ-bounded approximation property (λ-BAP) if T above can always be chosen to satisfy ||T|| ≤ λ;
- the metric approximation property (MAP) if it has the 1-BAP.

Proposition

X has the λ -BAP if and only if $I \in \lambda \overline{B}^{SOT}$, where *B* is the unit ball of the space of finite-rank operators on *X*.

In particular, if there is a sequence $(F_n)_{n=1}^{\infty}$ of finite-rank operators satisfying $||F_n|| \to 1$ and $||F_nx - x|| \to 0$ for all x, then X has the MAP.

MAP Theorems

 $\mathcal{F}(M)$ has the MAP if

 \bigcirc M = X is a finite-dimensional normed space (Godefroy, Kalton 03);

MAP Theorems

- M = X is a finite-dimensional normed space (Godefroy, Kalton 03);
- 2 $M = (\ell_1, \|\cdot\|_1)$ (Lancien, Pernecká 13);

MAP Theorems

- M = X is a finite-dimensional normed space (Godefroy, Kalton 03);
- 2 $M = (\ell_1, \|\cdot\|_1)$ (Lancien, Pernecká 13);
- M is a countable perfect metric space (Dalet 15);

MAP Theorems

- M = X is a finite-dimensional normed space (Godefroy, Kalton 03);
- 2 $M = (\ell_1, \|\cdot\|_1)$ (Lancien, Pernecká 13);
- M is a countable perfect metric space (Dalet 15);
- M is a separable ultrametric space (Cuth, Doucha 16);

MAP Theorems

- M = X is a finite-dimensional normed space (Godefroy, Kalton 03);
- 2 $M = (\ell_1, \|\cdot\|_1)$ (Lancien, Pernecká 13);
- M is a countable perfect metric space (Dalet 15);
- M is a separable ultrametric space (Cuth, Doucha 16);
- M is a compact group with a left-invariant metric (Doucha, Kaufmann 20);

MAP Theorems

- M = X is a finite-dimensional normed space (Godefroy, Kalton 03);
- $M = (\ell_1, \|\cdot\|_1)$ (Lancien, Pernecká 13);
- M is a countable perfect metric space (Dalet 15);
- M is a separable ultrametric space (Cuth, Doucha 16);
- M is a compact group with a left-invariant metric (Doucha, Kaufmann 20);
- *M* is a compact subset of \mathbb{R}^N that is purely 1-unrectifiable (Aliaga, Gartland, Petitjean, Procházka 22).

BAP Theorems

• A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP (Godefroy, Kalton 03).

BAP Theorems

- A Banach space X has the λ-BAP if and only if F(X) has the λ-BAP (Godefroy, Kalton 03).
- **②** There is C > 0 such that $\mathcal{F}(M)$ has the $C\sqrt{N}$ -BAP whenever $M \subseteq (\mathbb{R}^N, \|\cdot\|_2)$ (Lancien, Pernecká 13).

BAP Theorems

- A Banach space X has the λ-BAP if and only if F(X) has the λ-BAP (Godefroy, Kalton 03).
- ② There is C > 0 such that $\mathcal{F}(M)$ has the $C\sqrt{N}$ -BAP whenever $M \subseteq (\mathbb{R}^N, \|\cdot\|_2)$ (Lancien, Pernecká 13).

Question (Godefroy 15)

If $M \subseteq (\mathbb{R}^N, \|\cdot\|)$ does $\mathcal{F}(M)$ have the MAP or λ -BAP (independent of N)?

BAP Theorems

- A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP (Godefroy, Kalton 03).
- ② There is C > 0 such that $\mathcal{F}(M)$ has the $C\sqrt{N}$ -BAP whenever $M \subseteq (\mathbb{R}^N, \|\cdot\|_2)$ (Lancien, Pernecká 13).

Question (Godefroy 15)

If $M \subseteq (\mathbb{R}^N, \|\cdot\|)$ does $\mathcal{F}(M)$ have the MAP or λ -BAP (independent of N)?

Failure of AP Theorems

• There is a compact convex subset *M* of a Banach space *X*, such that $\mathcal{F}(M)$ fails the AP (Godefroy, Ozawa 14).

BAP Theorems

- A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP (Godefroy, Kalton 03).
- ② There is C > 0 such that $\mathcal{F}(M)$ has the $C\sqrt{N}$ -BAP whenever $M \subseteq (\mathbb{R}^N, \|\cdot\|_2)$ (Lancien, Pernecká 13).

Question (Godefroy 15)

If $M \subseteq (\mathbb{R}^N, \|\cdot\|)$ does $\mathcal{F}(M)$ have the MAP or λ -BAP (independent of N)?

Failure of AP Theorems

- There is a compact convex subset *M* of a Banach space *X*, such that $\mathcal{F}(M)$ fails the AP (Godefroy, Ozawa 14).
- There is a compact space *M* homeomorphic to the Cantor set, such that $\mathcal{F}(M)$ fails the AP (Hájek, Lancien, Pernecká 16)

The MAP and $\mathcal{F}(M)$, where $M \subseteq \mathbb{R}^N$

Consider $M \subseteq (\mathbb{R}^N, ||| \cdot |||)$ with distinguished point x_0 . As $\mathcal{F}(M) \equiv \mathcal{F}(\overline{M})$, we assume *M* is closed.

The MAP and $\mathcal{F}(M)$, where $M \subseteq \mathbb{R}^N$

Consider $M \subseteq (\mathbb{R}^N, \|\|\cdot\|)$ with distinguished point x_0 . As $\mathcal{F}(M) \equiv \mathcal{F}(\overline{M})$, we assume *M* is closed.

Theorem A (Pernecká, Smith 15)

Let *M* be compact and have the property that, given $\varepsilon > 0$, there exists $\hat{M} \subset \mathbb{R}^N$ and an 'almost retraction' $\Psi : \hat{M} \to M$, such that

 $M \subseteq \operatorname{int}(\hat{M}), \quad |||\cdot||| - \operatorname{Lip}(\Psi) \leq 1 + \varepsilon \text{ and } |||x - \Psi(x)||| \leq \varepsilon \text{ for all } x \in \hat{M}.$ Then $\mathcal{F}(M, \|\|\cdot\|\|)$ has the MAP.

The MAP and $\mathcal{F}(M)$, where $M \subseteq \mathbb{R}^N$

Consider $M \subseteq (\mathbb{R}^N, \|\|\cdot\|)$ with distinguished point x_0 . As $\mathcal{F}(M) \equiv \mathcal{F}(\overline{M})$, we assume *M* is closed.

Theorem A (Pernecká, Smith 15)

Let *M* be compact and have the property that, given $\varepsilon > 0$, there exists $\hat{M} \subset \mathbb{R}^N$ and an 'almost retraction' $\Psi : \hat{M} \to M$, such that

 $M \subseteq \operatorname{int}(\hat{M}), \quad \|\|\cdot\|\| - \operatorname{Lip}(\Psi) \leqslant 1 + \varepsilon \quad \text{and} \quad \|\|x - \Psi(x)\|\| \leqslant \varepsilon \text{ for all } x \in \hat{M}.$ Then $\mathcal{F}(M, \|\|\cdot\|\|)$ has the MAP.

• We 'fatten' *M* in order to mollify elements of $Lip_0(M)$ with convolutions.

The MAP and $\mathcal{F}(M)$, where $M \subseteq \mathbb{R}^N$

Consider $M \subseteq (\mathbb{R}^N, \|\|\cdot\|)$ with distinguished point x_0 . As $\mathcal{F}(M) \equiv \mathcal{F}(\overline{M})$, we assume *M* is closed.

Theorem A (Pernecká, Smith 15)

Let *M* be compact and have the property that, given $\varepsilon > 0$, there exists $\hat{M} \subset \mathbb{R}^N$ and an 'almost retraction' $\Psi : \hat{M} \to M$, such that

 $M \subseteq \operatorname{int}(\hat{M}), \quad \|\|\cdot\|\| - \operatorname{Lip}(\Psi) \leqslant 1 + \varepsilon \quad \text{and} \quad \|\|x - \Psi(x)\|\| \leqslant \varepsilon \text{ for all } x \in \hat{M}.$ Then $\mathcal{F}(M, \|\|\cdot\|\|)$ has the MAP.

- We 'fatten' *M* in order to mollify elements of $Lip_0(M)$ with convolutions.
- Theorem A applies to 'locally downwards closed' compact sets M. This means that, locally, the boundary of *M* is (under a change of coordinates) the graph of a function from \mathbb{R}^{N-1} to \mathbb{R} .

The MAP and $\mathcal{F}(M)$, where $M \subseteq \mathbb{R}^N$

Consider $M \subseteq (\mathbb{R}^N, \|\|\cdot\|\|)$ with distinguished point x_0 . As $\mathcal{F}(M) \equiv \mathcal{F}(\overline{M})$, we assume *M* is closed.

Theorem A (Pernecká, Smith 15)

Let *M* be compact and have the property that, given $\varepsilon > 0$, there exists $\hat{M} \subset \mathbb{R}^N$ and an 'almost retraction' $\Psi : \hat{M} \to M$, such that

 $M \subseteq \operatorname{int}(\hat{M}), \quad \|\|\cdot\|\| - \operatorname{Lip}(\Psi) \leqslant 1 + \varepsilon \quad \text{and} \quad \|\|x - \Psi(x)\|\| \leqslant \varepsilon \text{ for all } x \in \hat{M}.$ Then $\mathcal{F}(M, \|\|\cdot\|\|)$ has the MAP.

- We 'fatten' *M* in order to mollify elements of $Lip_0(M)$ with convolutions.
- Theorem A applies to 'locally downwards closed' compact sets M. This means that, locally, the boundary of M is (under a change of coordinates) the graph of a function from \mathbb{R}^{N-1} to \mathbb{R} .
- By Theorem A, if M is compact and convex then $\mathcal{F}(M)$ has the MAP with respect to any norm.

On \mathbb{R}^3 , pick a norm $\|\cdot\|$ such that $X := \mathbb{R}^2 \times \{0\}$ is not 1-complemented with respect to $\|\cdot\|$.

On \mathbb{R}^3 , pick a norm $\|\cdot\|$ such that $X := \mathbb{R}^2 \times \{0\}$ is not 1-complemented with respect to $\|\cdot\|$.

Pick a C^{∞} -smooth norm $\|\cdot\|$ such that $\left[-\frac{1}{2}, \frac{3}{2}\right]^2 \times \{1\} \subseteq S := S_{(\mathbb{R}^3, \|\cdot\|)}$.

On \mathbb{R}^3 , pick a norm $\|\|\cdot\|\|$ such that $X := \mathbb{R}^2 \times \{0\}$ is not 1-complemented with respect to $\|\|\cdot\|\|$.

Pick a C^{∞} -smooth norm $\|\cdot\|$ such that $\left[-\frac{1}{2}, \frac{3}{2}\right]^2 \times \{1\} \subseteq S := S_{(\mathbb{R}^3, \|\cdot\|)}$.

Also define $C = [0, 1]^2 \times \{0\}$ and $D = [-\frac{1}{2}, \frac{3}{2}]^2 \times \{0\} \subseteq X$.

- On \mathbb{R}^3 , pick a norm $\|\|\cdot\|\|$ such that $X := \mathbb{R}^2 \times \{0\}$ is not 1-complemented with respect to $\|\|\cdot\|\|$.
- Pick a C^{∞} -smooth norm $\|\cdot\|$ such that $\left[-\frac{1}{2}, \frac{3}{2}\right]^2 \times \{1\} \subseteq S := S_{(\mathbb{R}^3, \|\cdot\|)}$.
- Also define $C = [0, 1]^2 \times \{0\}$ and $D = [-\frac{1}{2}, \frac{3}{2}]^2 \times \{0\} \subseteq X$.

Assume that, given $\varepsilon > 0$, there exists $\hat{S} \subseteq \mathbb{R}^3$ and $\Psi : \hat{S} \to S$, such that

 $S \subseteq \operatorname{int}(\hat{S}), \quad \|\|\cdot\|\| \operatorname{-Lip}(\Psi) \leqslant 1 + \varepsilon \quad \text{and} \quad \|\|x - \Psi(x)\|\| \leqslant \varepsilon \text{ for all } x \in \hat{S}.$

On \mathbb{R}^3 , pick a norm $\|\|\cdot\|\|$ such that $X := \mathbb{R}^2 \times \{0\}$ is not 1-complemented with respect to $\|\|\cdot\|\|$.

Pick a C^{∞} -smooth norm $\|\cdot\|$ such that $[-\frac{1}{2}, \frac{3}{2}]^2 \times \{1\} \subseteq S := S_{(\mathbb{R}^3, \|\cdot\|)}$.

Also define $C = [0, 1]^2 \times \{0\}$ and $D = [-\frac{1}{2}, \frac{3}{2}]^2 \times \{0\} \subseteq X$.

Assume that, given $\varepsilon > 0$, there exists $\hat{S} \subseteq \mathbb{R}^3$ and $\Psi : \hat{S} \to S$, such that

 $S \subseteq \operatorname{int}(\hat{S}), \quad \|\|\cdot\|\| \operatorname{-Lip}(\Psi) \leqslant 1 + \varepsilon \quad \text{and} \quad \|\|x - \Psi(x)\|\| \leqslant \varepsilon \text{ for all } x \in \hat{S}.$

Then for all small enough $\varepsilon > 0$, by translation, there exists open $U \supseteq C$ and $\Psi: U \to D$ such that

 $\|\|\cdot\|\|$ - Lip $(\Psi) \leq 1 + \varepsilon$ and $\|\|x - \Psi(x)\|\| \leq \varepsilon$ for all $x \in U$.

- On \mathbb{R}^3 , pick a norm $\|\|\cdot\|\|$ such that $X := \mathbb{R}^2 \times \{0\}$ is not 1-complemented with respect to $\|\|\cdot\|\|$.
- Pick a C^{∞} -smooth norm $\|\cdot\|$ such that $[-\frac{1}{2}, \frac{3}{2}]^2 \times \{1\} \subseteq S := S_{(\mathbb{R}^3, \|\cdot\|)}$.
- Also define $C = [0, 1]^2 \times \{0\}$ and $D = [-\frac{1}{2}, \frac{3}{2}]^2 \times \{0\} \subseteq X$.
- Assume that, given $\varepsilon > 0$, there exists $\hat{S} \subseteq \mathbb{R}^3$ and $\Psi : \hat{S} \to S$, such that
 - $\mathcal{S} \subseteq \operatorname{int}(\hat{\mathcal{S}}), \quad \|\|\cdot\|\| \operatorname{-Lip}(\Psi) \leqslant 1 + \varepsilon \quad \text{and} \quad \|\|x \Psi(x)\|\| \leqslant \varepsilon \text{ for all } x \in \hat{\mathcal{S}}.$

Then for all small enough $\varepsilon > 0$, by translation, there exists open $U \supseteq C$ and $\Psi: U \to D$ such that

 $\|\|\cdot\|\|$ - Lip $(\Psi) \leq 1 + \varepsilon$ and $\|\|x - \Psi(x)\|\| \leq \varepsilon$ for all $x \in U$.

Given $\varepsilon > 0$, Ψ and U, by Rademacher's Theorem $\Psi'(x)$ exists a.a. $x \in U$. We have $|||\Psi'(x)||| \leq 1 + \varepsilon$, and ran $\Psi'(x) \subseteq X$ because $D \subseteq X$.

On \mathbb{R}^3 , pick a norm $\|\|\cdot\|\|$ such that $X := \mathbb{R}^2 \times \{0\}$ is not 1-complemented with respect to $\|\|\cdot\|\|$.

Pick a C^{∞} -smooth norm $\|\cdot\|$ such that $[-\frac{1}{2}, \frac{3}{2}]^2 \times \{1\} \subseteq S := S_{(\mathbb{R}^3, \|\cdot\|)}$.

Also define $C = [0, 1]^2 \times \{0\}$ and $D = [-\frac{1}{2}, \frac{3}{2}]^2 \times \{0\} \subseteq X$.

Assume that, given $\varepsilon > 0$, there exists $\hat{S} \subseteq \mathbb{R}^3$ and $\Psi : \hat{S} \to S$, such that

$$S \subseteq \operatorname{int}(\hat{S}), \quad |||\cdot||| \operatorname{-Lip}(\Psi) \leqslant 1 + \varepsilon \quad \text{and} \quad |||x - \Psi(x)||| \leqslant \varepsilon \text{ for all } x \in \hat{S}.$$

Then for all small enough $\varepsilon > 0$, by translation, there exists open $U \supseteq C$ and $\Psi : U \to D$ such that

$$\|\|\cdot\|\| - \operatorname{Lip}(\Psi) \leqslant 1 + \varepsilon$$
 and $\|\|x - \Psi(x)\|\| \leqslant \varepsilon$ for all $x \in U$.

Given $\varepsilon > 0$, Ψ and U, by Rademacher's Theorem $\Psi'(x)$ exists a.a. $x \in U$. We have $|||\Psi'(x)||| \leq 1 + \varepsilon$, and ran $\Psi'(x) \subseteq X$ because $D \subseteq X$.

Let a>0 such that $[0,1]^2 imes [-a,a] \subseteq U$ and define linear $\mathcal{T}:\mathbb{R}^3 o X$ by

$$T = \frac{1}{2a} \int_{-a}^{a} \int_{0}^{1} \int_{0}^{1} \Psi'(x_1, x_2, x_3) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{d}x_3.$$

We have $|||T||| \leq 1 + \varepsilon$ and, using the property $|||x - \Psi(x)||| \leq \varepsilon$ for all $x \in U$, it can be shown that

 $|||T(1,0,0) - (1,0,0)|||, |||T(0,1,0) - (0,1,0)||| \leq 2\varepsilon.$

We have $|||T||| \le 1 + \varepsilon$ and, using the property $|||x - \Psi(x)||| \le \varepsilon$ for all $x \in U$, it can be shown that

 $\|||T(1,0,0)-(1,0,0)|||, |||T(0,1,0)-(0,1,0)||| \leq 2\varepsilon.$

Hence for every $n \in \mathbb{N}$ there exists a linear map $T_n : \mathbb{R}^3 \to X$ such that

 $|||T_n||| \leq 1 + \frac{1}{n}$ and $|||T_n(1,0,0) - (1,0,0)|||, |||T_n(0,1,0) - (0,1,0)||| \leq \frac{2}{n}$.

We have $|||T||| \le 1 + \varepsilon$ and, using the property $|||x - \Psi(x)||| \le \varepsilon$ for all $x \in U$, it can be shown that

 $\|||T(1,0,0)-(1,0,0)|||, \||T(0,1,0)-(0,1,0)||| \leq 2\varepsilon.$

Hence for every $n \in \mathbb{N}$ there exists a linear map $T_n : \mathbb{R}^3 \to X$ such that

 $|||T_n||| \leq 1 + \frac{1}{n}$ and $|||T_n(1,0,0) - (1,0,0)|||, |||T_n(0,1,0) - (0,1,0)||| \leq \frac{2}{n}$.

By compactness, there exists $T : \mathbb{R}^3 \to X$ such that |||T||| = 1 and $T \upharpoonright_X$ is the identity on *X*, but this contradicts the assumption that *X* is not 1-complemented with respect to $||| \cdot |||$.

Theorem B (Talimdjioski, Smith 22)

Let $\|\cdot\|$ and $\|\|\cdot\|\|$ be norms on \mathbb{R}^N with $\|\cdot\| C^1$ -smooth, and let $S = S_{(\mathbb{R}^N, \|\cdot\|)}$ (with arbitrary distinguished point x_0). Then $\mathcal{F}(S, \|\|\cdot\|)$ has the MAP.

Theorem B (Talimdjioski, Smith 22)

Let $\|\cdot\|$ and $\|\|\cdot\|\|$ be norms on \mathbb{R}^N with $\|\cdot\| C^1$ -smooth, and let $S = S_{(\mathbb{R}^N, \|\cdot\|)}$ (with arbitrary distinguished point x_0). Then $\mathcal{F}(S, \|\|\cdot\|)$ has the MAP.

To prove this we work mostly in $Lip_0(S, |||\cdot|||)$. Outline of the proof:

Theorem B (Talimdjioski, Smith 22)

Let $\|\cdot\|$ and $\|\|\cdot\|\|$ be norms on \mathbb{R}^N with $\|\cdot\| C^1$ -smooth, and let $S = S_{(\mathbb{R}^N, \|\cdot\|)}$ (with arbitrary distinguished point x_0). Then $\mathcal{F}(S, \|\|\cdot\|)$ has the MAP.

To prove this we work mostly in $Lip_0(S, ||| \cdot |||)$. Outline of the proof:

• Construct mollifier operators $S_n : \operatorname{Lip}_0(S) \to \operatorname{Lip}_0(S)$, $n \in \mathbb{N}$, such that $\|S_n(f) - f\|_{\infty} \leq \frac{1}{n}$ and $\|\|\cdot\|\| - \operatorname{Lip}(S_n(f)) \leq 1 + \frac{1}{n}$ whenever $\|\|\cdot\|\| - \operatorname{Lip}(f) \leq 1$.

Theorem B (Talimdjioski, Smith 22)

Let $\|\cdot\|$ and $\|\cdot\|$ be norms on \mathbb{R}^N with $\|\cdot\| C^1$ -smooth, and let $S = S_{(\mathbb{R}^N, \|\cdot\|)}$ (with arbitrary distinguished point x_0). Then $\mathcal{F}(S, \|\cdot\|)$ has the MAP.

To prove this we work mostly in $Lip_0(S, ||| \cdot |||)$. Outline of the proof:

• Construct mollifier operators $S_n : \operatorname{Lip}_0(S) \to \operatorname{Lip}_0(S), n \in \mathbb{N}$, such that

$$\|S_n(f) - f\|_{\infty} \leqslant \frac{1}{n}$$
 and $\|\|\cdot\|\| - \operatorname{Lip}(S_n(f)) \leqslant 1 + \frac{1}{n}$

whenever $\|\|\cdot\|\|$ -Lip $(f) \leq 1$.

Construct a suitable open cover (U_i)^k_{i=1} of S and Lipschitz partition of unity (α_i)^k_{i=1} subordinated to the cover.

Theorem B (Talimdjioski, Smith 22)

Let $\|\cdot\|$ and $\|\cdot\|$ be norms on \mathbb{R}^N with $\|\cdot\| C^1$ -smooth, and let $S = S_{(\mathbb{R}^N, \|\cdot\|)}$ (with arbitrary distinguished point x_0). Then $\mathcal{F}(S, \|\cdot\|)$ has the MAP.

To prove this we work mostly in $Lip_0(S, ||| \cdot |||)$. Outline of the proof:

• Construct mollifier operators $S_n : \operatorname{Lip}_0(S) \to \operatorname{Lip}_0(S), n \in \mathbb{N}$, such that

$$\|S_n(f) - f\|_{\infty} \leqslant \frac{1}{n}$$
 and $\|\|\cdot\|\| - \operatorname{Lip}(S_n(f)) \leqslant 1 + \frac{1}{n}$

whenever $\||\cdot|||$ -Lip $(f) \leq 1$.

- Construct a suitable open cover (U_i)^k_{i=1} of S and Lipschitz partition of unity (α_i)^k_{i=1} subordinated to the cover.
- ◎ Construct finite-rank operators $P_{n,i}$: Lip₀(S) → $C(\overline{U_i})$, $i \leq k$, such that

$$\left\| \mathsf{P}_{n,i}(\mathcal{S}_n(f)) - \mathcal{S}_n(f) \right\|_{\overline{U_i}} \right\|_{\infty}, \, \|\| \cdot \|\| \cdot \mathsf{Lip}(\mathsf{P}_{n,i}(\mathcal{S}_n(f)) - \mathcal{S}_n(f)) \|_{\overline{U_i}}) \, \leqslant \, \frac{1}{n},$$

whenever $||| \cdot ||| \cdot Lip(f) \leq 1$, and $P_{n,i}(S_n(f))(x_0) = 0$ whenever $x_0 \in U_i$.

Theorem B (Talimdjioski, Smith 22)

Let $\|\cdot\|$ and $\|\|\cdot\|\|$ be norms on \mathbb{R}^N with $\|\cdot\| C^1$ -smooth, and let $S = S_{(\mathbb{R}^N, \|\|\cdot\||)}$ (with arbitrary distinguished point x_0). Then $\mathcal{F}(S, \|\|\cdot\|\|)$ has the MAP.

To prove this we work mostly in $Lip_0(S)$. Outline of the proof:

• Define finite-rank operators $Q_n : \operatorname{Lip}_0(S) \to \operatorname{Lip}_0(S)$ by

$$Q_n(f)(x) = \sum_{i=1}^k \alpha_i(x) P_{n,i}(S_n(f))(x), \qquad x \in S.$$

Theorem B (Talimdjioski, Smith 22)

Let $\|\cdot\|$ and $\|\|\cdot\|\|$ be norms on \mathbb{R}^N with $\|\cdot\| C^1$ -smooth, and let $S = S_{(\mathbb{R}^N, \|\|\cdot\||)}$ (with arbitrary distinguished point x_0). Then $\mathcal{F}(S, \|\|\cdot\|\|)$ has the MAP.

To prove this we work mostly in $Lip_0(S)$. Outline of the proof:

• Define finite-rank operators $Q_n : \operatorname{Lip}_0(S) \to \operatorname{Lip}_0(S)$ by

$$Q_n(f)(x) = \sum_{i=1}^k \alpha_i(x) P_{n,i}(S_n(f))(x), \qquad x \in S.$$

So By (2) and (3), there is a constant *H* (independent of *n*), such that $\|Q_n(f) - f\|_{\infty} \leq \frac{1}{n}$ and $\|\|\cdot\|\| - \operatorname{Lip}(Q_n(f)) \leq 1 + \frac{H}{n}$ whenever $\|\|\cdot\|\| - \operatorname{Lip}(f) \leq 1$.

Theorem B (Talimdjioski, Smith 22)

Let $\|\cdot\|$ and $\|\|\cdot\|\|$ be norms on \mathbb{R}^N with $\|\cdot\| C^1$ -smooth, and let $S = S_{(\mathbb{R}^N, \|\|\cdot\||)}$ (with arbitrary distinguished point x_0). Then $\mathcal{F}(S, \|\|\cdot\|\|)$ has the MAP.

To prove this we work mostly in $Lip_0(S)$. Outline of the proof:

• Define finite-rank operators Q_n : $Lip_0(S) \rightarrow Lip_0(S)$ by

$$Q_n(f)(x) = \sum_{i=1}^k \alpha_i(x) P_{n,i}(S_n(f))(x), \qquad x \in S.$$

- So By (2) and (3), there is a constant *H* (independent of *n*), such that $\|Q_n(f) - f\|_{\infty} \leq \frac{1}{n}$ and $\|\|\cdot\|\| - \operatorname{Lip}(Q_n(f)) \leq 1 + \frac{H}{n}$ whenever $\|\|\cdot\|\| - \operatorname{Lip}(f) \leq 1$.
- The Q_n are dual operators; $\mathcal{F}(S, \|\|\cdot\|\|)$ has the MAP by virtue of the corresponding predual operators.

Theorem B

Step 1: the mollifier operators S_n

Fix $\psi : \mathbb{R}^N \setminus \{0\} \to S$ by $\psi(x) = x/||x||$. The next lemma follows because $\|\cdot\|$ is C^1 -smooth (note $\|\cdot\|$ -Lip $(\psi) > 1$ in general).

Theorem B

Step 1: the mollifier operators S_n

Fix $\psi : \mathbb{R}^N \setminus \{0\} \to S$ by $\psi(x) = x/||x||$. The next lemma follows because $\|\cdot\|$ is C^1 -smooth (note $\|\cdot\|$ -Lip $(\psi) > 1$ in general).

Lemma

Given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\|\psi(\mathbf{x}+\mathbf{z})-\psi(\mathbf{y}+\mathbf{z})-(\mathbf{x}-\mathbf{y})\| \leq \varepsilon \|\mathbf{x}-\mathbf{y}\|$$

whenever $x, y \in S, z \in \mathbb{R}^N$ and $||x - y||, ||z|| \leq \delta$.

Step 1: the mollifier operators S_n

Fix $\psi : \mathbb{R}^N \setminus \{0\} \to S$ by $\psi(x) = x/||x||$. The next lemma follows because $\|\cdot\|$ is C^1 -smooth (note $\|\cdot\|$ -Lip $(\psi) > 1$ in general).

Lemma

Given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\|\psi(\mathbf{x}+\mathbf{z})-\psi(\mathbf{y}+\mathbf{z})-(\mathbf{x}-\mathbf{y})\| \leq \varepsilon \|\mathbf{x}-\mathbf{y}\|$$

whenever $x, y \in S, z \in \mathbb{R}^N$ and $||x - y||, ||z|| \leq \delta$.

Given $s \in (0, \frac{1}{2})$ and $f \in \text{Lip}_{0}(S)$, define the C^{∞} -smooth map $\hat{f}_{s} : \mathbb{R}^{N} \to \mathbb{R}$ by

$$\hat{f}_{s}(x) = \int_{\mathbb{R}^{N}} \eta_{s}(z) f(\psi(x+z)) \,\mathrm{d}z$$

where η_s is the standard C^{∞} -smooth mollifier having support $||z||_2 \leq s$.

Step 1: the mollifier operators S_n

Fix $\psi : \mathbb{R}^N \setminus \{0\} \to S$ by $\psi(x) = x/||x||$. The next lemma follows because $\|\cdot\|$ is C^1 -smooth (note $\|\cdot\|$ -Lip $(\psi) > 1$ in general).

Lemma

Given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\|\psi(\mathbf{x}+\mathbf{z})-\psi(\mathbf{y}+\mathbf{z})-(\mathbf{x}-\mathbf{y})\| \leq \varepsilon \|\mathbf{x}-\mathbf{y}\|$$

whenever $x, y \in S, z \in \mathbb{R}^N$ and $||x - y||, ||z|| \leq \delta$.

Given $s \in (0, \frac{1}{2})$ and $f \in \text{Lip}_{0}(S)$, define the C^{∞} -smooth map $\hat{f}_{s} : \mathbb{R}^{N} \to \mathbb{R}$ by

$$\hat{f}_{s}(x) = \int_{\mathbb{R}^{N}} \eta_{s}(z) f(\psi(x+z)) dz$$

where η_s is the standard C^{∞} -smooth mollifier having support $||z||_2 \leq s$.

Given $n \in \mathbb{N}$, define S_n on $\mathcal{F}(S)$ by $S_n(f)(x) = \hat{f}_{s_n}(x) - \hat{f}_{s_n}(x_0), x \in S$. Here, s_n is chosen (using the above lemma) so that

$$\|S_n(f) - f\|_{\infty} \leq \frac{1}{n}$$
 and $\|\|\cdot\|\| - \operatorname{Lip}(S_n(f)) \leq 1 + \frac{1}{n}$.

Given $x \in S$, let $T_x : \mathbb{R}^{N-1} \to \ker x^*$ be a $\|\cdot\|_2$ -isometry.

Given $x \in S$, let $T_x : \mathbb{R}^{N-1} \to \ker x^*$ be a $\|\cdot\|_2$ -isometry.

Given $n \in \mathbb{N}$, define $\tilde{f}_{n,x} : \mathbb{R}^{N-1} \to \mathbb{R}$ by

$$\tilde{f}_{n,x}(u) = S_n(f)(\psi(x+T_xu)) = S_n(f)\left(\frac{x+T_xu}{\|x+T_xu\|}\right).$$

This function is C^1 -smooth on \mathbb{R}^{N-1} , being a composition of C^1 -smooth and C^{∞} -smooth maps.

Given $x \in S$, let $T_x : \mathbb{R}^{N-1} \to \ker x^*$ be a $\|\cdot\|_2$ -isometry.

Given $n \in \mathbb{N}$, define $\tilde{f}_{n,x} : \mathbb{R}^{N-1} \to \mathbb{R}$ by

$$\tilde{f}_{n,x}(u) = S_n(f)(\psi(x+T_xu)) = S_n(f)\left(\frac{x+T_xu}{\|x+T_xu\|}\right).$$

This function is C^1 -smooth on \mathbb{R}^{N-1} , being a composition of C^1 -smooth and C^{∞} -smooth maps.

Using the C¹-smoothness, we apply an 'interpolation process' to \tilde{f}_{nx} using finitely many of its values near $0 \in \mathbb{R}^{N-1}$, to produce a new map on a neighbourhood of $0 \in \mathbb{R}^{N-1}$ that approximates $\tilde{f}_{n,x}$ in both a uniform and Lipschitz sense.

Given $x \in S$, let $T_x : \mathbb{R}^{N-1} \to \ker x^*$ be a $\|\cdot\|_2$ -isometry.

Given $n \in \mathbb{N}$, define $\tilde{f}_{n,x} : \mathbb{R}^{N-1} \to \mathbb{R}$ by

$$\tilde{f}_{n,x}(u) = S_n(f)(\psi(x+T_xu)) = S_n(f)\left(\frac{x+T_xu}{\|x+T_xu\|}\right).$$

This function is C^1 -smooth on \mathbb{R}^{N-1} , being a composition of C^1 -smooth and C^{∞} -smooth maps.

Using the C¹-smoothness, we apply an 'interpolation process' to \tilde{f}_{nx} using finitely many of its values near $0 \in \mathbb{R}^{N-1}$, to produce a new map on a neighbourhood of $0 \in \mathbb{R}^{N-1}$ that approximates $\tilde{f}_{n,x}$ in both a uniform and Lipschitz sense.

We apply the inverse of $u \mapsto \psi(x + T_x u)$ to obtain a further map that approximates $S_n(f)$ on a neighbourhood of $x \in S$.

Given $x \in S$, let $T_x : \mathbb{R}^{N-1} \to \ker x^*$ be a $\|\cdot\|_2$ -isometry.

Given $n \in \mathbb{N}$, define $\tilde{f}_{n,\kappa} : \mathbb{R}^{N-1} \to \mathbb{R}$ by

$$\tilde{f}_{n,x}(u) = S_n(f)(\psi(x+T_xu)) = S_n(f)\left(\frac{x+T_xu}{\|x+T_xu\|}\right).$$

This function is C^1 -smooth on \mathbb{R}^{N-1} , being a composition of C^1 -smooth and C^{∞} -smooth maps.

Using the C¹-smoothness, we apply an 'interpolation process' to \tilde{f}_{nx} using finitely many of its values near $0 \in \mathbb{R}^{N-1}$, to produce a new map on a neighbourhood of $0 \in \mathbb{R}^{N-1}$ that approximates $\tilde{f}_{n,x}$ in both a uniform and Lipschitz sense.

We apply the inverse of $u \mapsto \psi(x + T_x u)$ to obtain a further map that approximates $S_n(f)$ on a neighbourhood of $x \in S$.

We do this for every $x \in S$ (independently of *n*). This yields an open cover of S, from which we extract the partition of unity and the $P_{n,i}$.